No Access Submitted: 10 October 2018 Accepted: 02 January 2019 Published Online: 17 January 2019
Journal of Vacuum Science & Technology A 37, 021506 (2019); https://doi.org/10.1116/1.5065468
more...View AffiliationsView Contributors
  • Martin Magnuson
  • Lina Tengdelius
  • Grzegorz Greczynski
  • Fredrik Eriksson
  • Jens Jensen
  • Jun Lu
  • Mattias Samuelsson
  • Per Eklund
  • Lars Hultman
  • Hans Högberg
The authors investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 °C as well as the influence of the sputtering power at 850 °C for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in the angular distribution between C, Si, and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at. % in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by x-ray photoelectron spectroscopy shows C–Ti and Si–C bonding in the Ti3SiC2 films and Si–Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 °C and with the growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 °C. Four-point probe resistivity measurements give values in the range ∼120 to ∼450 μΩ cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.
The authors acknowledge funding from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971). M.M. acknowledges financial support from the Swedish Energy Research (No. 43606-1) and the Carl Tryggers Foundation (Nos. CTS16:303 and CTS14:310). P.E. acknowledges the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program. G.G. acknowledges financial support from the Åforsk Foundation (Grant No. 16-359) and Carl Tryggers Foundation (No. CTS 17:166). The authors acknowledge Åke Öberg at ABB Sverige AB for the target material and Uppsala University for access to the Tandem Laboratory.
  1. 1. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6, Google ScholarCrossref
  2. 2. M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013). Google ScholarCrossref
  3. 3. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman, Thin Solid Films 518, 1851 (2010). https://doi.org/10.1016/j.tsf.2009.07.184, Google ScholarCrossref
  4. 4. M. W. Barsoum and M. Radovic, Ann. Rev. Mater. Res. 41, 195 (2011). https://doi.org/10.1146/annurev-matsci-062910-100448, Google ScholarCrossref
  5. 5. M. Radovic and M. W. Barsoum, Am. Ceram. Soc. Bull. 92, 20 (2013). Google Scholar
  6. 6. Z. M. Sun, Int. Mater. Rev. 56, 143 (2011). https://doi.org/10.1179/1743280410Y.0000000001, Google ScholarCrossref
  7. 7. W. Jeitschko and H. Nowotny, Monatsh. Chem. 98, 329 (1967). https://doi.org/10.1007/BF00899949, Google ScholarCrossref
  8. 8. M. Magnuson and M. Mattesini, Thin Solid Films 621, 108 (2017). https://doi.org/10.1016/j.tsf.2016.11.005, Google ScholarCrossref
  9. 9. P. Eklund, J. Rosen, and P. O. Å. Persson, J. Phys. D Appl. Phys. 50, 113001 (2017). https://doi.org/10.1088/1361-6463/aa57bc, Google ScholarCrossref
  10. 10. J. J. Nickl, K. K. Schweitzer, and P. Luxenberg, J. Less Comm. Met. 26, 335 (1972). https://doi.org/10.1016/0022-5088(72)90083-5, Google ScholarCrossref
  11. 11. T. Goto and T. Hirai, Mater. Res. Bull. 22, 1195 (1987). https://doi.org/10.1016/0025-5408(87)90128-0, Google ScholarCrossref
  12. 12. C. Racault, F. Langlais, and C. C. Bernard, J. Mater. Sci. 29, 5023 (1994). https://doi.org/10.1007/BF01151093, Google ScholarCrossref
  13. 13. E. Pickering, W. J. Lackey, and S. Crain, Chem. Vap. Deposition 6, 289 (2000). https://doi.org/10.1002/1521-3862(200011)6:6<289::AID-CVDE289>3.0.CO;2-4, Google ScholarCrossref
  14. 14. S. Jacques, H. Fakih, and J.-C. Viala, Thin Solid Films 518, 5071 (2010). https://doi.org/10.1016/j.tsf.2010.02.059, Google ScholarCrossref
  15. 15. S. A. Kinnunen, J. Malm, K. Arstila, M. Lahtinen, and T. Sajavaara, Nucl. Instrum. Methods Phys. Res. Sect. B 406, 152 (2017). https://doi.org/10.1016/j.nimb.2016.12.032, Google ScholarCrossref
  16. 16. J.-P. Palmquist, U. Jansson, T. Seppänen, P. O. Å. Persson, J. Birch, L. Hultman, and P. Isberg, Appl. Phys. Lett. 81, 835 (2002). https://doi.org/10.1063/1.1494865, Google ScholarCrossref, ISI
  17. 17. J.-P. Palmquist et al., Phys. Rev. B 70, 165401 (2004). https://doi.org/10.1103/PhysRevB.70.165401, Google ScholarCrossref
  18. 18. J. Emmerlich, J.-P. Palmquist, H. Högberg, J. M. Molina-Aldareguia, Z. Czigány, S. Sasvári, P. O. Å. Persson, U. Jansson, and L. Hultman, J. Appl. Phys. 96, 4817 (2004). https://doi.org/10.1063/1.1790571, Google ScholarCrossref, ISI
  19. 19. B. Holm, R. R. Ahuja, S. Li, and B. Johansson, J. Appl. Phys. 91, 9874 (2002). https://doi.org/10.1063/1.1476076, Google ScholarCrossref, ISI
  20. 20. T. H. Scabarozi, J. D. Hettinger, S. E. Lofland, J. Lu, L. Hultman, J. Jensen, and P. Eklund, Scr. Mater. 65, 811 (2011). https://doi.org/10.1016/j.scriptamat.2011.07.038, Google ScholarCrossref
  21. 21. P. V. Istomin, E. I. Istomina, A. Nadutkin, V. E. Grass, and M. Presniakov, Inorg. Chem. 55, 11050 (2016). https://doi.org/10.1021/acs.inorgchem.6b01601, Google ScholarCrossref
  22. 22. P. V. Istomin, E. I. Istomina, A. Nadutkina, V. E. Grass, A. Leonov, M. Kaplan, and M. Presniakov, Ceram. Int. 43, 16128 (2017). https://doi.org/10.1016/j.ceramint.2017.08.180, Google ScholarCrossref
  23. 23. E. I. Istomina, P. V. Istomin, A. V. Nadutkin, V. E. Grass, and A. S. Bogdanova, Inorg. Mater. 54, 528 (2018). https://doi.org/10.1134/S0020168518060055, Google ScholarCrossref
  24. 24. P. Eklund, J. Emmerlich, H. Högberg, O. Wilhelmsson, P. Isberg, J. Birch, P. O. Å. Persson, U. Jansson, and L. Hultman, J. Vac. Sci. Technol. B 23, 6 (2005). https://doi.org/10.1116/1.2131081, Google ScholarScitation
  25. 25. P. Eklund, M. Beckers, J. Frodelius, H. Högberg, and L. Hultman, J. Vac. Sci. Technol. A 25, 1381 (2007). https://doi.org/10.1116/1.2757178, Google ScholarScitation, ISI
  26. 26. M. Balzer and M. Fenker, see http://www.fem-online.de/balzer_stoichiometry_ti3sic2_hipims.pdf. Google Scholar
  27. 27. J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, L. Hultman, and U. Helmersson, Thin Solid Films 515, 1731 (2006). https://doi.org/10.1016/j.tsf.2006.06.015, Google ScholarCrossref
  28. 28. H. Nowotny, Prog. Solid State Chem. 2, 27 (1970). https://doi.org/10.1016/0022-4596(70)90028-9, Google ScholarCrossref
  29. 29. V. Vishnyakov, J. Lu, P. Eklund, L. Hultman, and J. Colligon, Vacuum 93, 56 (2013). https://doi.org/10.1016/j.vacuum.2013.01.003, Google ScholarCrossref
  30. 30. A. G. Dirks, R. A. M. Wolters, and A. J. M. Nellissen, Thin Solid Films 193–194, 201 (1990). https://doi.org/10.1016/S0040-6090(05)80028-8, Google ScholarCrossref
  31. 31. D. B. Bergstrom, F. Tian, I. Petrov, J. Moser, and J. E. Greene, Appl. Phys. Lett. 67, 3102 (1995). https://doi.org/10.1063/1.114878, Google ScholarCrossref, ISI
  32. 32. L. R. Shaginyan, M. Mišina, S. Kadlec, L. Jastrabík, A. Macková, and V. Peřina, J. Vac. Sci. Technol. A 19, 2554 (2001). https://doi.org/10.1116/1.1392401, Google ScholarScitation, ISI
  33. 33. J. Neidhardt, S. Mráz, J. M. Schneider, E. Strub, W. Bohne, B. Liedke, W. Möller, and C. Mitterer, J. Appl. Phys. 104, 063304 (2008). https://doi.org/10.1063/1.2978211, Google ScholarCrossref, ISI
  34. 34. P. Eklund, C. Virojanadara, J. Emmerlich, L. I. Johansson, H. Högberg, and L. Hultman, Phys. Rev. B 74, 045417 (2006). https://doi.org/10.1103/PhysRevB.74.045417, Google ScholarCrossref
  35. 35. G. Greczynski, D. Primetzhofer, and L. Hultman, Appl. Surf. Sci. 436, 102 (2018). https://doi.org/10.1016/j.apsusc.2017.11.264, Google ScholarCrossref
  36. 36. CASA XPS, v.2.3.19, see http://www.casaxps.com/. Google Scholar
  37. 37. H. J. Whitlow, G. Possnert, and C. S. Petersson, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 448 (1987). https://doi.org/10.1016/0168-583X(87)90527-1, Google ScholarCrossref
  38. 38. J. Jensen, D. Martin, A. Surpi, and T. Kubart, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1893 (2010). https://doi.org/10.1016/j.nimb.2010.02.051, Google ScholarCrossref
  39. 39. M. S. Janson, CONTES (Conversion of Time-Energy Spectra)—A Program for ERDA Data Analysis (2004). Google Scholar
  40. 40. T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, Powder Diffr. 29, S13 (2014). https://doi.org/10.1017/S0885715614000840, Google ScholarCrossref
  41. 41. J. Lu, X. D. Gao, S. L. Zhang, and L. Hultman, Cryst. Growth Design 13, 1801 (2013). https://doi.org/10.1021/cg301627y, Google ScholarCrossref
  42. 42. J. M. Schneider, D. P. Sigumonrong, D. Music, C. Walter, J. Emmerlich, R. Iskandar, and J. Mayer, Scr. Mater. 57, 1137 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.006, Google ScholarCrossref
  43. 43. S. E. Stoltz, H. I. Starnberg, and M. W. Barsoum, J. Phys. Chem. Solids 64, 2321 (2003). https://doi.org/10.1016/S0022-3697(03)00267-1, Google ScholarCrossref
  44. 44. O. Wilhelmsson et al., J. Cryst. Growth 291, 290 (2006). https://doi.org/10.1016/j.jcrysgro.2006.03.008, Google ScholarCrossref
  45. 45. J. F. Moulder, W. F. Stickle, S. P. E. and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy—A Reference Book of Standard Spectra for Indentification and Interpretation of XPS Data (Perkin-Elmer, Eden Prairie, 1992). Google Scholar
  46. 46. M. Magnuson et al., Phys. Rev. B 72, 245101 (2005). https://doi.org/10.1103/PhysRevB.72.245101, Google ScholarCrossref
  47. 47. C. Chen, C. Huang, Y. Lin, L. Chen, and K. Chen, Diam. Relat. Mater. 14, 1126 (2005). https://doi.org/10.1016/j.diamond.2004.10.045, Google ScholarCrossref
  48. 48. M. Magnuson, E. Lewin, L. Hultman, and U. Jansson, Phys. Rev. B 80, 235108 (2009). https://doi.org/10.1103/PhysRevB.80.235108, Google ScholarCrossref
  49. 49. E. Lewin et al., Surf. Coat. Technol. 202, 3563 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.038, Google ScholarCrossref
  50. 50. E. Lewin, M. Gorgoi, F. Schäfers, S. Svensson, and U. Jansson, Surf. Coat. Technol. 204, 445 (2009). https://doi.org/10.1016/j.surfcoat.2009.08.006, Google ScholarCrossref
  51. 51. L. Muehlhoff, W. J. Choyke, M. J. Bozack, and J. J. T. Yates, J. Appl. Phys. 60, 2842 (1986). https://doi.org/10.1063/1.337068, Google ScholarCrossref, ISI
  52. 52. A. Mesarwi and A. Ignatiev, Surf. Sci. 244, 15 (1991). https://doi.org/10.1016/0039-6028(91)90165-O, Google ScholarCrossref
  53. 53. International Centre for Diffraction Data, Ti3SiC2, PDF No. 74-0310. Google Scholar
  54. 54. International Centre for Diffraction Data, TiC, PDF No. 32-1383. Google Scholar
  55. 55. International Centre for Diffraction Data, TiSi2, PDF No. 85-0879. Google Scholar
  56. 56. C. Walter, C. Martinez, T. EI-Raghy, and J. M. Schneider, Steel Res. Int. 76, 225 (2005). https://doi.org/10.1002/srin.200506000, Google ScholarCrossref
  57. 57. M. Magnuson et al., Phys. Rev. B. 74, 205102 (2006). https://doi.org/10.1103/PhysRevB.74.205102, Google ScholarCrossref
  58. 58. H. Högberg, L. Hultman, J. Emmerlich, T. Joelsson, P. Eklund, J. M. Molina-Aldaregui, J.-P. Palmquist, O. Wilhelmsson, and U. Jansson, Surf. Coat. Technol. 193, 6 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.174, Google ScholarCrossref
  59. 59. H. O. Pierson, Handbook of Refractory Carbides and Nitrides — Properties, Characteristics, Processing and Applications (Noyes, Atlantic City, NJ, 1996). Google Scholar
  60. 60. J. Frodelius, P. Eklund, M. Beckers, P. O. Å. Persson, H. Högberg, and L. Hultman, Thin Solid Films 518, 1621 (2010). https://doi.org/10.1016/j.tsf.2009.11.059, Google ScholarCrossref
  61. 61. J. Frodelius, J. Lu, J. Jensen, P. Paul, L. Hultman, and P. Eklund, J. Eur. Ceram. Soc. 33, 375 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.09.003, Google ScholarCrossref
  62. 62. M. D. Tucker, P. O. Å. Persson, M. C. Guenette, J. Rosén, M. M. M. Bilek, and D. R. McKenzie, J. Appl. Phys. 109, 014903 (2011). https://doi.org/10.1063/1.3527960, Google ScholarCrossref, ISI
  63. 63. M. C. Guenette, M. D. Tucker, M. Ionescu, M. M. M. Bilek, and D. R. McKenzie, J. Appl. Phys. 109, 083503 (2011). https://doi.org/10.1063/1.3573490, Google ScholarCrossref, ISI
  64. 64. R. Yu, Q. Zhan, L. L. He, Y. C. Zhou, and H. Q. Ye, Acta Mater. 50, 4127 (2002). https://doi.org/10.1016/S1359-6454(02)00248-3, Google ScholarCrossref
  65. 65. H. Rueß, M. Baben, S. Mráz, L. Shang, P. Polcik, S. Kolozsvári, M. Hans, D. Primetzhofer, and J. M. Schneider, Vacuum 145, 285 (2017). https://doi.org/10.1016/j.vacuum.2017.08.048, Google ScholarCrossref
  66. 66. Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Vacuum 153, 62 (2018). https://doi.org/10.1016/j.vacuum.2018.04.001, Google ScholarCrossref
  67. 67. M. Magnuson et al., Phys. Rev. B. 74, 195108 (2006). https://doi.org/10.1103/PhysRevB.74.195108, Google ScholarCrossref
  68. 68. Y. Li, G. Zhao, H. Qi, M. Li, Y. Zheng, Y. Qian, and L. Sheng, Ceram. Int. 44, 17530 (2018). https://doi.org/10.1016/j.ceramint.2018.06.055, Google ScholarCrossref
  69. 69. M. Magnuson et al., Phys. Rev. B. 76, 195127 (2007). https://doi.org/10.1103/PhysRevB.76.195127, Google ScholarCrossref
  1. © 2019 Author(s). Published by the AVS.