No Access Submitted: 22 February 2019 Accepted: 08 April 2019 Published Online: 24 April 2019
Journal of Vacuum Science & Technology A 37, 030908 (2019); https://doi.org/10.1116/1.5093620
more...View Affiliations
View Contributors
  • Karsten Arts
  • Vincent Vandalon
  • Riikka L. Puurunen
  • Mikko Utriainen
  • Feng Gao
  • Wilhelmus M. M. (Erwin) Kessels
  • Harm C. M. Knoops
The conformality of a film grown by atomic layer deposition (ALD) is strongly affected by the reactivities of the precursor and coreactant, which can be expressed in terms of their sticking probabilities toward the surface. We show that the leading front of the thickness profile in high-aspect-ratio structures gives direct information on the sticking probabilities of the reactants under most conditions. The slope of the front has been used to determine the sticking probabilities of Al(CH3)3 and H2O during ALD of Al2O3. The determined values are (0.5–2) × 10−3 for Al(CH3)3 and (0.8–2) × 10−4 for H2O at a set-point temperature of 275 °C, corresponding to an estimated substrate temperature of ∼220 °C. Additionally, the thickness profiles reveal soft-saturation behavior during the H2O step, most dominantly at reduced temperatures, which can limit the conformality of Al2O3 grown by ALD. This work thus provides insights regarding quantitative information on sticking probabilities and conformality during ALD, which is valuable for gaining a deeper understanding of ALD kinetics.
This work is part of the research program HTSM with Project No. 15352, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). M. Bouman and Filmetrics are acknowledged for carrying out the reflectometry measurements. V.T.T. acknowledges the financial support for developing the LHAR3 conformality test structure from the Academy of Finland through the Finnish Centre of Excellence on Atomic Layer Deposition and from Business Finland (National Innovation Funding Center of Finland, previously: Tekes) through the PillarHall TUTL project.
  1. 1. T. Suntola, Mater. Sci. Rep. 4, 261 (1989). https://doi.org/10.1016/S0920-2307(89)80006-4, Google ScholarCrossref
  2. 2. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005). https://doi.org/10.1063/1.1940727, Google ScholarCrossref, ISI
  3. 3. S. M. George, Chem. Rev. 110, 111 (2010). https://doi.org/10.1021/cr900056b, Google ScholarCrossref, ISI
  4. 4. C. S. Hwang, Atomic Layer Deposition for Semiconductors (Springer, New York, 2012). Google Scholar
  5. 5. H. C. M. Knoops, S. E. Potts, A. A. Bol, and W. M. M. Kessels, Handbook of Crystal Growth Thin Films and Epitaxy (Elsevier, New York , 2014), pp. 1101–1134. Google Scholar
  6. 6. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 156, P63 (2009). https://doi.org/10.1149/1.3072694, Google ScholarCrossref
  7. 7. F. Gao, S. Arpiainen, and R. L. Puurunen, J. Vac. Sci. Technol. A 33, 010601 (2015). https://doi.org/10.1116/1.4903941, Google ScholarScitation, ISI
  8. 8. A. Yanguas-Gil and J. W. Elam, Theor. Chem. Acc. 133, 1465 (2014). https://doi.org/10.1007/s00214-014-1465-x, Google ScholarCrossref
  9. 9. V. Cremers, F. Geenen, C. Detavernier, and J. Dendooven, J. Vac. Sci. Technol. A 35, 01B115 (2017). https://doi.org/10.1116/1.4968201, Google ScholarScitation, ISI
  10. 10. P. Poodt, A. Mameli, J. Schulpen, W. M. M. (Erwin) Kessels, and F. Roozeboom, J. Vac. Sci. Technol. A 35, 021502 (2017). https://doi.org/10.1116/1.4973350, Google ScholarScitation, ISI
  11. 11. V. Cremers, R. L. Puurunen, and J. Dendooven, Appl. Phys. Rev. 6, 021302 (2019). https://doi.org/10.1063/1.5060967, Google ScholarCrossref
  12. 12. M. Rose and J. W. Bartha, Appl. Surf. Sci. 255, 6620 (2009). https://doi.org/10.1016/j.apsusc.2009.02.055, Google ScholarCrossref
  13. 13. M. Rose, J. W. Bartha, and I. Endler, Appl. Surf. Sci. 256, 3778 (2010). https://doi.org/10.1016/j.apsusc.2010.01.025, Google ScholarCrossref
  14. 14. M. Ylilammi, O. M. E. Ylivaara, and R. L. Puurunen, J. Appl. Phys. 123, 205301 (2018). https://doi.org/10.1063/1.5028178, Google ScholarCrossref, ISI
  15. 15. V. Vandalon and W. M. M. Kessels, Appl. Phys. Lett. 108, 011607 (2016). https://doi.org/10.1063/1.4939654, Google ScholarCrossref, ISI
  16. 16. Y. Zhu, K. A. Dunn, and A. E. Kaloyeros, J. Mater. Res. 22, 1292 (2007). https://doi.org/10.1557/jmr.2007.0152, Google ScholarCrossref
  17. 17. B. H. Choi, Y. H. Lim, J. H. Lee, Y. B. Kim, H. N. Lee, and H. K. Lee, Microelectron. Eng. 87, 1391 (2010). https://doi.org/10.1016/j.mee.2009.11.163, Google ScholarCrossref
  18. 18. J. Gluch, T. Rößler, D. Schmidt, S. B. Menzel, M. Albert, and J. Eckert, Thin Solid Films 518, 4553 (2010). https://doi.org/10.1016/j.tsf.2009.12.029, Google ScholarCrossref
  19. 19. M. Ladanov, P. Algarin-Amaris, G. Matthews, M. Ram, S. Thomas, A. Kumar, and J. Wang, Nanotechnology 24 (2013). https://doi.org/10.1088/0957-4484/24/37/375301, Google ScholarCrossref
  20. 20. J. D. Caldwell et al., Opt. Express 19, 26056 (2011). https://doi.org/10.1364/OE.19.026056, Google ScholarCrossref
  21. 21. J. C. Ye, Y. H. An, T. W. Heo, M. M. Biener, R. J. Nikolic, M. Tang, H. Jiang, and Y. M. Wang, J. Power Sources 248, 447 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.097, Google ScholarCrossref
  22. 22. H. Sheth, J. Mater. Chem. C 3, 132 (2015). https://doi.org/10.1039/C4TC01961J, Google ScholarCrossref
  23. 23. T. Dobbelaere, F. Mattelaer, J. Dendooven, P. Vereecken, and C. Detavernier, Chem. Mater. 28, 3435 (2016). https://doi.org/10.1021/acs.chemmater.6b00853, Google ScholarCrossref
  24. 24. S. P. Sree, J. Dendooven, J. Jammaer, K. Masschaele, D. Deduytsche, J. D. Haen, C. E. A. Kirschhock, J. A. Martens, and C. Detavernier, Chem. Mater. 24, 2775 (2012). https://doi.org/10.1021/cm301205p, Google ScholarCrossref
  25. 25. J. Dendooven, K. Devloo-Casier, M. Ide, K. Grandfield, M. Kurttepeli, K. F. Ludwig, P. van der Voort, and C. Detavernier, Nanoscale 6, 14991 (2014). https://doi.org/10.1039/C4NR05049E, Google ScholarCrossref
  26. 26. N. T. Gabriel and J. J. Talghader, Appl. Opt. 49, 1242 (2010). https://doi.org/10.1364/AO.49.001242, Google ScholarCrossref
  27. 27. M. C. Schwille, J. Barth, T. Schössler, F. Schön, J. W. Bartha, and M. Oettel, Model. Simul. Mater. Sci. Eng. 25, 1 (2017). https://doi.org/10.1088/1361-651X/aa5f9d, Google ScholarCrossref
  28. 28. M. Mattinen, J. Hämäläinen, F. Gao, P. Jalkanen, K. Mizohata, J. Räisänen, R. L. Puurunen, M. Ritala, and M. Leskelä, Langmuir 32, 10559 (2016). https://doi.org/10.1021/acs.langmuir.6b03007, Google ScholarCrossref
  29. 29. R. L. Puurunen and F. Gao, 2016 14th International Baltic Conference on Atomic Layer Deposition (BALD 2016), St. Petersburg, 2–4 October 2016 (IEEE, New York, 2016). Google Scholar
  30. 30. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010). https://doi.org/10.1149/1.3491381, Google ScholarCrossref
  31. 31. M. K. Gobbert, V. Prasad, and T. S. Cale, Thin Solid Films 410, 129 (2002). https://doi.org/10.1016/S0040-6090(02)00236-5, Google ScholarCrossref
  32. 32. G. Prechtl, A. Kersch, G. S. Icking-konert, W. Jacobs, T. Hecht, and H. Boubekeur, Technical Digest International Electron Devices Meeting, Washington, DC, 8–10 December 2003 (IEEE, New York, 2003). Google Scholar
  33. 33. J.-Y. Kim, J.-H. Kim, J.-H. Ahn, P.-K. Park, and S.-W. Kang, J. Electrochem. Soc. 154, H1008 (2007). https://doi.org/10.1149/1.2789802, Google ScholarCrossref
  34. 34. R. A. Adomaitis, Chem. Vap. Deposition 17, 353 (2011). https://doi.org/10.1002/cvde.201106922, Google ScholarCrossref
  35. 35. A. V. Fadeev and K. V. Rudenko, Thin Solid Films 672, 83 (2018). https://doi.org/10.1016/j.tsf.2018.12.038, Google ScholarCrossref
  36. 36. A. Yanguas-Gil and J. W. Elam, Chem. Vap. Deposition 18, 46 (2012). https://doi.org/10.1002/cvde.201106938, Google ScholarCrossref
  37. 37. T. Keuter, N. H. Menzler, G. Mauer, F. Vondahlen, R. Vaßen, and H. P. Buchkremer, J. Vac. Sci. Technol. A 33, 01A104 (2015). https://doi.org/10.1116/1.4892385, Google ScholarScitation, ISI
  38. 38. Y. Miyano, R. Narasaki, T. Ichikawa, A. Fukumoto, F. Aiso, and N. Tamaoki, Jpn. J. Appl. Phys. 57, 06JB03 (2018). https://doi.org/10.7567/JJAP.57.06JB03, Google ScholarCrossref
  39. 39. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Chem. Mater. 15, 3507 (2003). https://doi.org/10.1021/cm0303080, Google ScholarCrossref
  40. 40. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 157, G111 (2010). https://doi.org/10.1149/1.3301664, Google ScholarCrossref
  41. 41. J. Musschoot, J. Dendooven, D. Deduytsche, J. Haemers, G. Buyle, and C. Detavernier, Surf. Coatings Technol. 206, 4511 (2012). https://doi.org/10.1016/j.surfcoat.2012.02.038, Google ScholarCrossref
  42. 42. H. Shimizu, K. Sakoda, T. Momose, M. Koshi, and Y. Shimogaki, J. Vac. Sci. Technol. A 30, 01A144 (2012). https://doi.org/10.1116/1.3666034, Google ScholarScitation, ISI
  43. 43. R. I. Masel, Principle of Adsorption and Reaction on Solid Surfaces (Wiley, New York, 1996). Google Scholar
  44. 44. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003). https://doi.org/10.1002/cvde.200390005, Google ScholarCrossref
  45. 45. J. Y. Kim, J. H. Ahn, S. W. Kang, and J. H. Kim, J. Appl. Phys. 101, 073502 (2007). https://doi.org/10.1063/1.2714685, Google ScholarCrossref
  46. 46. A. Yanguas-Gil and J. W. Elam, J. Vac. Sci. Technol. A 30, 01A159 (2012). https://doi.org/10.1116/1.3670396, Google ScholarScitation, ISI
  47. 47. M. C. Schwille, T. Schössler, F. Schön, M. Oettel, and J. W. Bartha, J. Vac. Sci. Technol. A 35, 01B119 (2017). https://doi.org/10.1116/1.4971197, Google ScholarScitation, ISI
  48. 48. V. Vandalon and W. M. M. Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017). https://doi.org/10.1116/1.4993597, Google ScholarScitation, ISI
  49. 49. G. P. Gakis, H. Vergnes, E. Scheid, C. Vahlas, A. G. Boudouvis, and B. Caussat, Chem. Eng. Sci. 195, 399 (2019). https://doi.org/10.1016/j.ces.2018.09.037, Google ScholarCrossref
  1. © 2019 Author(s). Published by the AVS.