ABSTRACT
The conformality of a film grown by atomic layer deposition (ALD) is strongly affected by the reactivities of the precursor and coreactant, which can be expressed in terms of their sticking probabilities toward the surface. We show that the leading front of the thickness profile in high-aspect-ratio structures gives direct information on the sticking probabilities of the reactants under most conditions. The slope of the front has been used to determine the sticking probabilities of Al(CH3)3 and H2O during ALD of Al2O3. The determined values are (0.5–2) × 10−3 for Al(CH3)3 and (0.8–2) × 10−4 for H2O at a set-point temperature of 275 °C, corresponding to an estimated substrate temperature of ∼220 °C. Additionally, the thickness profiles reveal soft-saturation behavior during the H2O step, most dominantly at reduced temperatures, which can limit the conformality of Al2O3 grown by ALD. This work thus provides insights regarding quantitative information on sticking probabilities and conformality during ALD, which is valuable for gaining a deeper understanding of ALD kinetics.
ACKNOWLEDGMENTS
This work is part of the research program HTSM with Project No. 15352, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). M. Bouman and Filmetrics are acknowledged for carrying out the reflectometry measurements. V.T.T. acknowledges the financial support for developing the LHAR3 conformality test structure from the Academy of Finland through the Finnish Centre of Excellence on Atomic Layer Deposition and from Business Finland (National Innovation Funding Center of Finland, previously: Tekes) through the PillarHall TUTL project.
- 1. T. Suntola, Mater. Sci. Rep. 4, 261 (1989). https://doi.org/10.1016/S0920-2307(89)80006-4, Google ScholarCrossref
- 2. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005). https://doi.org/10.1063/1.1940727, Google ScholarCrossref, ISI
- 3. S. M. George, Chem. Rev. 110, 111 (2010). https://doi.org/10.1021/cr900056b, Google ScholarCrossref, ISI
- 4. C. S. Hwang, Atomic Layer Deposition for Semiconductors (Springer, New York, 2012). Google Scholar
- 5. H. C. M. Knoops, S. E. Potts, A. A. Bol, and W. M. M. Kessels, Handbook of Crystal Growth Thin Films and Epitaxy (Elsevier, New York , 2014), pp. 1101–1134. Google Scholar
- 6. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 156, P63 (2009). https://doi.org/10.1149/1.3072694, Google ScholarCrossref
- 7. F. Gao, S. Arpiainen, and R. L. Puurunen, J. Vac. Sci. Technol. A 33, 010601 (2015). https://doi.org/10.1116/1.4903941, Google ScholarScitation, ISI
- 8. A. Yanguas-Gil and J. W. Elam, Theor. Chem. Acc. 133, 1465 (2014). https://doi.org/10.1007/s00214-014-1465-x, Google ScholarCrossref
- 9. V. Cremers, F. Geenen, C. Detavernier, and J. Dendooven, J. Vac. Sci. Technol. A 35, 01B115 (2017). https://doi.org/10.1116/1.4968201, Google ScholarScitation, ISI
- 10. P. Poodt, A. Mameli, J. Schulpen, W. M. M. (Erwin) Kessels, and F. Roozeboom, J. Vac. Sci. Technol. A 35, 021502 (2017). https://doi.org/10.1116/1.4973350, Google ScholarScitation, ISI
- 11. V. Cremers, R. L. Puurunen, and J. Dendooven, Appl. Phys. Rev. 6, 021302 (2019). https://doi.org/10.1063/1.5060967, Google ScholarCrossref
- 12. M. Rose and J. W. Bartha, Appl. Surf. Sci. 255, 6620 (2009). https://doi.org/10.1016/j.apsusc.2009.02.055, Google ScholarCrossref
- 13. M. Rose, J. W. Bartha, and I. Endler, Appl. Surf. Sci. 256, 3778 (2010). https://doi.org/10.1016/j.apsusc.2010.01.025, Google ScholarCrossref
- 14. M. Ylilammi, O. M. E. Ylivaara, and R. L. Puurunen, J. Appl. Phys. 123, 205301 (2018). https://doi.org/10.1063/1.5028178, Google ScholarCrossref, ISI
- 15. V. Vandalon and W. M. M. Kessels, Appl. Phys. Lett. 108, 011607 (2016). https://doi.org/10.1063/1.4939654, Google ScholarCrossref, ISI
- 16. Y. Zhu, K. A. Dunn, and A. E. Kaloyeros, J. Mater. Res. 22, 1292 (2007). https://doi.org/10.1557/jmr.2007.0152, Google ScholarCrossref
- 17. B. H. Choi, Y. H. Lim, J. H. Lee, Y. B. Kim, H. N. Lee, and H. K. Lee, Microelectron. Eng. 87, 1391 (2010). https://doi.org/10.1016/j.mee.2009.11.163, Google ScholarCrossref
- 18. J. Gluch, T. Rößler, D. Schmidt, S. B. Menzel, M. Albert, and J. Eckert, Thin Solid Films 518, 4553 (2010). https://doi.org/10.1016/j.tsf.2009.12.029, Google ScholarCrossref
- 19. M. Ladanov, P. Algarin-Amaris, G. Matthews, M. Ram, S. Thomas, A. Kumar, and J. Wang, Nanotechnology 24 (2013). https://doi.org/10.1088/0957-4484/24/37/375301, Google ScholarCrossref
- 20. J. D. Caldwell et al., Opt. Express 19, 26056 (2011). https://doi.org/10.1364/OE.19.026056, Google ScholarCrossref
- 21. J. C. Ye, Y. H. An, T. W. Heo, M. M. Biener, R. J. Nikolic, M. Tang, H. Jiang, and Y. M. Wang, J. Power Sources 248, 447 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.097, Google ScholarCrossref
- 22. H. Sheth, J. Mater. Chem. C 3, 132 (2015). https://doi.org/10.1039/C4TC01961J, Google ScholarCrossref
- 23. T. Dobbelaere, F. Mattelaer, J. Dendooven, P. Vereecken, and C. Detavernier, Chem. Mater. 28, 3435 (2016). https://doi.org/10.1021/acs.chemmater.6b00853, Google ScholarCrossref
- 24. S. P. Sree, J. Dendooven, J. Jammaer, K. Masschaele, D. Deduytsche, J. D. Haen, C. E. A. Kirschhock, J. A. Martens, and C. Detavernier, Chem. Mater. 24, 2775 (2012). https://doi.org/10.1021/cm301205p, Google ScholarCrossref
- 25. J. Dendooven, K. Devloo-Casier, M. Ide, K. Grandfield, M. Kurttepeli, K. F. Ludwig, P. van der Voort, and C. Detavernier, Nanoscale 6, 14991 (2014). https://doi.org/10.1039/C4NR05049E, Google ScholarCrossref
- 26. N. T. Gabriel and J. J. Talghader, Appl. Opt. 49, 1242 (2010). https://doi.org/10.1364/AO.49.001242, Google ScholarCrossref
- 27. M. C. Schwille, J. Barth, T. Schössler, F. Schön, J. W. Bartha, and M. Oettel, Model. Simul. Mater. Sci. Eng. 25, 1 (2017). https://doi.org/10.1088/1361-651X/aa5f9d, Google ScholarCrossref
- 28. M. Mattinen, J. Hämäläinen, F. Gao, P. Jalkanen, K. Mizohata, J. Räisänen, R. L. Puurunen, M. Ritala, and M. Leskelä, Langmuir 32, 10559 (2016). https://doi.org/10.1021/acs.langmuir.6b03007, Google ScholarCrossref
- 29. R. L. Puurunen and F. Gao, 2016 14th International Baltic Conference on Atomic Layer Deposition (BALD 2016), St. Petersburg, 2–4 October 2016 (IEEE, New York, 2016). Google Scholar
- 30. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010). https://doi.org/10.1149/1.3491381, Google ScholarCrossref
- 31. M. K. Gobbert, V. Prasad, and T. S. Cale, Thin Solid Films 410, 129 (2002). https://doi.org/10.1016/S0040-6090(02)00236-5, Google ScholarCrossref
- 32. G. Prechtl, A. Kersch, G. S. Icking-konert, W. Jacobs, T. Hecht, and H. Boubekeur, Technical Digest International Electron Devices Meeting, Washington, DC, 8–10 December 2003 (IEEE, New York, 2003). Google Scholar
- 33. J.-Y. Kim, J.-H. Kim, J.-H. Ahn, P.-K. Park, and S.-W. Kang, J. Electrochem. Soc. 154, H1008 (2007). https://doi.org/10.1149/1.2789802, Google ScholarCrossref
- 34. R. A. Adomaitis, Chem. Vap. Deposition 17, 353 (2011). https://doi.org/10.1002/cvde.201106922, Google ScholarCrossref
- 35. A. V. Fadeev and K. V. Rudenko, Thin Solid Films 672, 83 (2018). https://doi.org/10.1016/j.tsf.2018.12.038, Google ScholarCrossref
- 36. A. Yanguas-Gil and J. W. Elam, Chem. Vap. Deposition 18, 46 (2012). https://doi.org/10.1002/cvde.201106938, Google ScholarCrossref
- 37. T. Keuter, N. H. Menzler, G. Mauer, F. Vondahlen, R. Vaßen, and H. P. Buchkremer, J. Vac. Sci. Technol. A 33, 01A104 (2015). https://doi.org/10.1116/1.4892385, Google ScholarScitation, ISI
- 38. Y. Miyano, R. Narasaki, T. Ichikawa, A. Fukumoto, F. Aiso, and N. Tamaoki, Jpn. J. Appl. Phys. 57, 06JB03 (2018). https://doi.org/10.7567/JJAP.57.06JB03, Google ScholarCrossref
- 39. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Chem. Mater. 15, 3507 (2003). https://doi.org/10.1021/cm0303080, Google ScholarCrossref
- 40. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 157, G111 (2010). https://doi.org/10.1149/1.3301664, Google ScholarCrossref
- 41. J. Musschoot, J. Dendooven, D. Deduytsche, J. Haemers, G. Buyle, and C. Detavernier, Surf. Coatings Technol. 206, 4511 (2012). https://doi.org/10.1016/j.surfcoat.2012.02.038, Google ScholarCrossref
- 42. H. Shimizu, K. Sakoda, T. Momose, M. Koshi, and Y. Shimogaki, J. Vac. Sci. Technol. A 30, 01A144 (2012). https://doi.org/10.1116/1.3666034, Google ScholarScitation, ISI
- 43. R. I. Masel, Principle of Adsorption and Reaction on Solid Surfaces (Wiley, New York, 1996). Google Scholar
- 44. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003). https://doi.org/10.1002/cvde.200390005, Google ScholarCrossref
- 45. J. Y. Kim, J. H. Ahn, S. W. Kang, and J. H. Kim, J. Appl. Phys. 101, 073502 (2007). https://doi.org/10.1063/1.2714685, Google ScholarCrossref
- 46. A. Yanguas-Gil and J. W. Elam, J. Vac. Sci. Technol. A 30, 01A159 (2012). https://doi.org/10.1116/1.3670396, Google ScholarScitation, ISI
- 47. M. C. Schwille, T. Schössler, F. Schön, M. Oettel, and J. W. Bartha, J. Vac. Sci. Technol. A 35, 01B119 (2017). https://doi.org/10.1116/1.4971197, Google ScholarScitation, ISI
- 48. V. Vandalon and W. M. M. Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017). https://doi.org/10.1116/1.4993597, Google ScholarScitation, ISI
- 49. G. P. Gakis, H. Vergnes, E. Scheid, C. Vahlas, A. G. Boudouvis, and B. Caussat, Chem. Eng. Sci. 195, 399 (2019). https://doi.org/10.1016/j.ces.2018.09.037, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.