No Access Submitted: 29 July 2019 Accepted: 17 October 2019 Published Online: 04 November 2019
Journal of Vacuum Science & Technology B 37, 062921 (2019); https://doi.org/10.1116/1.5122014
more...View Affiliations
View Contributors
  • Ivan Ohlídal
  • Jiří Vohánka
  • Vilma Buršíková
  • Jaroslav Ženíšek
  • Petr Vašina
  • Martin Čermák
  • Daniel Franta
This paper presents the results of the optical characterization of inhomogeneous thin films of polymer-like SiO x C y H z and non-stoichiometric silicon nitride SiN x. An efficient method combining variable angle spectroscopic ellipsometry and spectroscopic reflectometry applied at the near-normal incidence based on the multiple-beam interference model is utilized for this optical characterization. The multiple-beam interference model allows us to quickly evaluate the values of ellipsometric parameters and reflectance of the inhomogeneous thin films, which exhibit general profiles of their optical constants. The spectral dependencies of the optical constants of the inhomogeneous SiO x C y H z and SiN x thin films are determined using the Campi–Coriasso dispersion model. The profiles of the optical constants of these films can also be determined. Furthermore, the transition layers at the lower boundaries of the characterized films are also taken into account. Spectral dependencies of the optical constants of these transition layers are also determined using the Campi–Coriasso dispersion model.
This work was supported by Project No. LO1411 (NPU I) funded by the Ministry of Education, Youth and Sports of the Czech Republic. Furthermore, this work was supported by the project 19-15240S of the Czech Science Foundation.
  1. 1. A. Vašíček, Optics of Thin Films (North-Holland, Amsterdam, 1960). Google Scholar
  2. 2. Z. Knittl, Optics of Thin Films (North Holland, Amsterdam, 1976). Google Scholar
  3. 3. R. Jacobsson, J. Opt. Soc. Am. 54, 422 (1964). https://doi.org/10.1364/JOSA.54.0422_1, Google ScholarCrossref
  4. 4. R. Jacobsson, “Light reflection from films of continuously varying refractive index,” in Progress in Optics, edited by E. Wolf (Elsevier, ■, 1966), Vol. 5, pp. 247–286. Google Scholar
  5. 5. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, edited by G. Hass, M. H. Francombe, and R. W. Hoffman (Academic, New York, 1975), Vol. 8, pp. 51–98. Google Scholar
  6. 6. J. C. Charmet and P. G. de Gennes, J. Opt. Soc. Am. 73, 1777 (1983). https://doi.org/10.1364/JOSA.73.001777, Google ScholarCrossref
  7. 7. C. K. Carniglia, J. Opt. Soc. Am. A 7, 848 (1990). https://doi.org/10.1364/JOSAA.7.000848, Google ScholarCrossref
  8. 8. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965). Google Scholar
  9. 9. M. Kildemo, O. Hunderi, and B. Drévillon, J. Opt. Soc. Am. A 14, 931 (1997). https://doi.org/10.1364/JOSAA.14.000931, Google ScholarCrossref
  10. 10. M. Kildemo, Appl. Opt. 37, 113 (1998). https://doi.org/10.1364/AO.37.000113, Google ScholarCrossref
  11. 11. M. Kildemo, R. Brenot, and B. Drévillon, Appl. Opt. 37, 5145 (1998). https://doi.org/10.1364/AO.37.005145, Google ScholarCrossref
  12. 12. D. Nečas, D. Franta, I. Ohlídal, A. Poruba, and P. Wostrý, Surf. Interface Anal. 45, 1188 (2013). https://doi.org/10.1002/sia.5250, Google ScholarCrossref
  13. 13. D. Franta, I. Ohlídal, P. Klapetek, P. Pokorný, and M. Ohlídal, Surf. Interface Anal. 32, 91 (2001). https://doi.org/10.1002/sia.1013, Google ScholarCrossref
  14. 14. J. Vohánka, I. Ohlídal, J. Ženíšek, P. Vašina, M. Čermák, and D. Franta, Surf. Interface Anal. 50, 757 (2018). https://doi.org/10.1002/sia.6473, Google ScholarCrossref
  15. 15. E. Toussaere and J. Zyss, Thin Solid Films 234, 432 (1993). https://doi.org/10.1016/0040-6090(93)90301-5, Google ScholarCrossref
  16. 16. I. Ohlídal and D. Franta, Acta Phys. Slov. 50, 489 (2000). Google Scholar
  17. 17. B. G. Bovard, Appl. Opt. 29, 24 (1990). https://doi.org/10.1364/AO.29.000024, Google ScholarCrossref
  18. 18. G. Boivin and D. St.-Germain, Appl. Opt. 26, 4209 (1987). https://doi.org/10.1364/AO.26.004209, Google ScholarCrossref
  19. 19. R. Vernhes, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Appl. Opt. 43, 97 (2004). https://doi.org/10.1364/AO.43.000097, Google ScholarCrossref, ISI
  20. 20. O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perrière, and F. Gourbilleau, Nanoscale Res. Lett. 8, 31 (2013). https://doi.org/10.1186/1556-276X-8-31, Google ScholarCrossref, ISI
  21. 21. A. Thomson, N. Lal, and Y. Wan, Phys. Status Solidi B 252, 2230 (2015). https://doi.org/10.1002/pssb.201552129, Google ScholarCrossref
  22. 22. A. Vašiček, J. Opt. Soc. Am. 37, 145 (1947). https://doi.org/10.1364/JOSA.37.000145, Google ScholarCrossref
  23. 23. K. Vedam, W. Knausenberger, and F. Lukes, J. Opt. Soc. Am. 59, 64 (1969). https://doi.org/10.1364/JOSA.59.000064, Google ScholarCrossref
  24. 24. O. S. Heavens and H. M. Liddell, Appl. Opt. 4, 629 (1965). https://doi.org/10.1364/AO.4.000629, Google ScholarCrossref
  25. 25. J. C. Manifacier, J. Gasiot, and J. P. Fillard, J. Phys. E Sci. Instrum. 9, 1002 (1976). https://doi.org/10.1088/0022-3735/9/11/032, Google ScholarCrossref
  26. 26. T. Lohner, K. J. Kumar, P. Petrik, A. Subrahmanyam, and I. Bársony, J. Mater. Res. 29, 1528 (2014). https://doi.org/10.1557/jmr.2014.173, Google ScholarCrossref
  27. 27. I. Ohlídal, K. Navrátil, and E. Schmidt, Appl. Phys. A 29, 157 (1982). https://doi.org/10.1007/BF00617773, Google ScholarCrossref
  28. 28. D. Franta, I. Ohlídal, and D. Petrýdes, Vacuum 80, 159 (2005). https://doi.org/10.1016/j.vacuum.2005.08.015, Google ScholarCrossref
  29. 29. D. Franta, I. Ohlídal, V. Buršíková, and L. Zajíčková, Thin Solid Films 455–456, 393 (2004). https://doi.org/10.1016/j.tsf.2003.11.236, Google ScholarCrossref
  30. 30. W. E. Case, Appl. Opt. 22, 1832 (1983). https://doi.org/10.1364/AO.22.001832, Google ScholarCrossref
  31. 31. R. M. A. Azzam, M. Elshazly-Zaghloul, and N. M. Bashara, Appl. Opt. 14, 1652 (1975). https://doi.org/10.1364/AO.14.001652, Google ScholarCrossref
  32. 32. I. Ohlídal, M. Čermák, and J. Vohánka, “Optical characterization of thin films exhibiting defects,” in Optical Characterization of Thin Solid Films, edited by O. Stenzel and M. Ohlídal (Springer International, Cham, 2018), pp. 271–313. Google Scholar
  33. 33. H. Ghosh, S. Mitra, H. Saha, S. K. Datta, and C. Banerjee, Mater. Sci. Eng. B Adv. 215, 29 (2017). https://doi.org/10.1016/j.mseb.2016.11.003, Google ScholarCrossref
  34. 34. I. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fibers on a silicon wafer: A CMOS compatible optical sensor,” in International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217) (IEEE, San Francisco, 1998), pp. 25–28. https://doi.org/10.1109/IEDM.1998.746238, Google Scholar
  35. 35. M.-S. Yang, K.-S. Cho, J.-H. Jhe, S.-Y. Seo, J. H. Shin, K. J. Kim, and D. W. Moon, Appl. Phys. Lett. 85, 3408 (2004). https://doi.org/10.1063/1.1787599, Google ScholarCrossref, ISI
  36. 36. W. J. Arora, A. J. Nichol, H. I. Smith, and G. Barbastathis, Appl. Phys. Lett. 88, 053108 (2006). https://doi.org/10.1063/1.2168516, Google ScholarCrossref, ISI
  37. 37. L. Zajíčková, V. Buršíková, Z. Kučerová, D. Franta, P. Dvořák, R. Šmíd, V. Peřina, and A. Macková, Plasma Sources Sci. Technol. 16, S123 (2007). https://doi.org/10.1088/0963-0252/16/1/S14, Google ScholarCrossref
  38. 38. S. B. Jin, Y. S. Choi, I. S. Choi, and J. G. Han, Thin Solid Films 519, 6763 (2011). https://doi.org/10.1016/j.tsf.2011.01.214, Google ScholarCrossref
  39. 39. B.-S. Lou, S.-B. Wang, S.-B. Hung, C.-J. Wang, and J.-W. Lee, Thin Solid Films 660, 637 (2018). https://doi.org/10.1016/j.tsf.2018.04.028, Google ScholarCrossref
  40. 40. S.-K. Lu, S.-C. Chen, T.-H. Chen, L.-W. Lai, R.-M. Liao, and D.-S. Liu, Surf. Coat. Technol. 280, 92 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.063, Google ScholarCrossref
  41. 41. Q. Deng, W. Li, L. Zhu, H. Chen, P. Ju, and H. Liu, Colloid Surf. A Physicochem. Eng. Asp. 558, 359 (2018). https://doi.org/10.1016/j.colsurfa.2018.09.001, Google ScholarCrossref
  42. 42. I. Ohlídal, J. Vohánka, J. Mistrík, M. Čermák, F. Vížďa, and D. Franta, “Approximations of reflection and transmission coefficients of inhomogeneous thin films based on multiple-beam interference model,” Thin Solid Films (published online). https://doi.org/10.1016/j.tsf.2019.03.001, Google Scholar
  43. 43. S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005). https://doi.org/10.1016/j.tsf.2004.10.051, Google ScholarCrossref, ISI
  44. 44. D. Franta, M. Čermák, J. Vohánka, and I. Ohlídal, Thin Solid Films 631, 12 (2017). https://doi.org/10.1016/j.tsf.2017.03.051, Google ScholarCrossref, ISI
  45. 45. D. Franta, J. Vohánka, and M. Čermák, “Universal dispersion model for characterisation of thin films over wide spectral range,” in Optical Characterization of Thin Solid Films, edited by O. Stenzel and M. Ohlídal (Springer International, Cham, 2018), pp. 31–82. Google Scholar
  46. 46. J. Vohánka, I. Ohlídal, M. Ohlídal, V. Šustek, M. Čermák, V. Šulc, P. Vašina, J. Ženíšek, and D. Franta, Coatings 9, 416 (2019). https://doi.org/10.3390/coatings9070416, Google ScholarCrossref
  47. 47. D. Franta, A. Dubroka, C. Wang, A. Giglia, J. Vohánka, P. Franta, and I. Ohlídal, Appl. Surf. Sci. 421, 405 (2017). https://doi.org/10.1016/j.apsusc.2017.02.021, Google ScholarCrossref
  48. 48. I. Ohlídal, J. Vohánka, M. Čermák, and D. Franta, “Ellipsometry of layered systems,” in Optical Characterization of Thin Solid Films, edited by O. Stenzel and M. Ohlídal (Springer International, Cham, 2018), pp. 233–267. Google Scholar
  49. 49. D. H. Loescher, R. J. Detry, and M. J. Clauser, J. Opt. Soc. Am. 61, 1230 (1971). https://doi.org/10.1364/JOSA.61.001230, Google ScholarCrossref
  50. 50. D. T. Pierce and W. E. Spicer, Phys. Rev. B 5, 3017 (1972). https://doi.org/10.1103/PhysRevB.5.3017, Google ScholarCrossref, ISI
  1. © 2019 Author(s). Published by the AVS.