ABSTRACT
Ultra-wide bandgap gallium oxide (∼5 eV) has emerged as a novel semiconductor platform for extending the current limits of power electronics and deep ultraviolet optoelectronics at a predicted fraction of cost. Finding effective acceptor dopant for gallium oxide is a hot issue. One element that quite often is considered as a potential candidate is zinc. A number of experimental works have reported the signature of Zn-acceptor, but the direct evidence of hole conductivity was missing. In this work, p-type Zn-doped Ga2O3 thin films were grown by the metal-organic chemical vapour deposition technique on sapphire substrates. By high-temperature Hall effect measurements, Zn related acceptor level ionization energy as 0.77 eV above the valence band maximum was determined. Additionally, we have carried out the simulation study regarding the application of the Zn:Ga2O3 semi-insulating material, to be used as a guard ring for improving the high voltage performance of the Schottky diode structure.
ACKNOWLEDGMENTS
The ICN2 is funded by the CERCA programme/Generalitat de Catalunya and by the Severo Ochoa programme of the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, Grant No. SEV-2017-0706). GEMaC colleagues acknowledge financial support of the French National Agency of Research (ANR), project “GOPOWER” (No. CE-50 N0015-01).
- 1. S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, J. Appl. Phys. 124, 220901 (2018). https://doi.org/10.1063/1.5062841, Google ScholarCrossref, ISI
- 2. J. Zhang, J. Shi, D.-C. Qi, L. Chen, and K. H. L. Zhang, APL Mater. 8, 020906 (2020). https://doi.org/10.1063/1.5142999, Google ScholarCrossref, ISI
- 3. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, J. Phys. Chem. Solids 67, 1656 (2006). https://doi.org/10.1016/j.jpcs.2006.02.018, Google ScholarCrossref
- 4. J. Åhman, G. Svensson, and J. Albertsson, Acta Crystallogr. C 52, 1336 (1996). https://doi.org/10.1107/S0108270195016404, Google ScholarCrossref
- 5. E. Chikoidze et al., Mater. Today Phys. 15, 100263 (2020). Google ScholarCrossref
- 6. C. Li, J.-L. Yan, L.-Y. Zhang, and G. Zhao, Chin. Phys. B 21, 127104 (2012). https://doi.org/10.1088/1674-1056/21/12/127104, Google ScholarCrossref, ISI
- 7. A. Kyrtsos, M. Matsubara, and E. Bellotti, Appl. Phys. Lett. 112, 032108 (2018). https://doi.org/10.1063/1.5009423, Google ScholarCrossref, ISI
- 8. C. Y. Yu, X. J. Liu, J. Lu, G. P. Zheng, and C. T. Liu, Sci. Rep. 3, 2124 (2013). https://doi.org/10.1038/srep02124, Google ScholarCrossref
- 9. J. L. Lyons, Semicond. Sci. Technol. 33, 05LT02 (2018). https://doi.org/10.1088/1361-6641/aaba98, Google ScholarCrossref, ISI
- 10. N. K. Shrestha, K. Lee, R. Kirchgeorg, R. Hahn, and P. Schmuki, Electrochem. Commun. 35, 112 (2013). https://doi.org/10.1016/j.elecom.2013.08.011, Google ScholarCrossref
- 11. Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura, and K. Teramura, Cataly. Lett. 125, 22 (2008). https://doi.org/10.1007/s10562-008-9557-7, Google ScholarCrossref
- 12. Q. Feng, J. Liu, Y. Yang, D. Pan, Y. Xing, X. Shi, X. Xia, and H. Liang, J. Alloy Compd. 687, 964 (2016). https://doi.org/10.1016/j.jallcom.2016.06.274, Google ScholarCrossref
- 13. X. H. Wang, F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, J. Phys. Chem. Solids 75, 1201 (2014). https://doi.org/10.1016/j.jpcs.2014.06.005, Google ScholarCrossref, ISI
- 14. F. Alema et al., Phys. Status Solids A 214, 1600688 (2017). https://doi.org/10.1002/pssa.201600688, Google ScholarCrossref
- 15. F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, and W. V. Schoenfeld, J. Cryst. Growth 475, 77 (2017). https://doi.org/10.1016/j.jcrysgro.2017.06.001, Google ScholarCrossref, ISI
- 16. Z. Baji, I. Cora, Z. E. Horváth, E. Agócs, and Z. Szabó, J. Vac. Sci. Technol. A 39, 032411 (2021). https://doi.org/10.1116/6.0000838, Google ScholarScitation, ISI
- 17. T. D. Gustafson, J. Jesenovec, C. A. Lenyk, N. C. Giles, J. S. McCloy, M. D. McCluskey, and L. E. Halliburton, J. Appl. Phys. 129, 155701 (2021). https://doi.org/10.1063/5.0047947, Google ScholarCrossref, ISI
- 18. D. Skachkov and W. R. L. Lambrecht, Appl. Phys. Lett. 114, 202102 (2019). https://doi.org/10.1063/1.5099396, Google ScholarCrossref, ISI
- 19. C. Zhang, F. Liao, X. Liang, H. Gong, Q. Liu, L. Li, X. Qin, X. Huang, and C. Huang, Phys. B Condens. Matter 562, 124 (2019). https://doi.org/10.1016/j.physb.2019.03.004, Google ScholarCrossref
- 20. C. Pansegrau, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, Appl. Phys. Lett. 119, 102104 (2021). https://doi.org/10.1063/5.0062059, Google ScholarCrossref, ISI
- 21. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland Publishing Company, Amsterdam, 1964), p. 1039. Google Scholar
- 22. M. J. Tadjer et al., J. Phys. D Appl. Phys. 54, 034005 (2021). Google ScholarCrossref
- 23. E. Chikoidze et al., J. Mater. Chem. C 7, 10231 (2019). Google ScholarCrossref
- 24. S. Modak et al., APL Mater. 10, 031106 (2022). https://doi.org/10.1063/5.0086449, Google ScholarCrossref, ISI
- 25. E. Chikoidze et al., Mater. Today Phys. 3, 118 (2017). Google ScholarCrossref
- 26. G. Pozina, C.-W. Hsu, N. Abrikossova, and C. Hemmingsson, Phys. Status Solidi A 218, 2100486 (2021). Google ScholarCrossref
- 27. E. Chikoidze et al., Cryst. Growth Des. 20, 2535 (2020). Google ScholarCrossref
- 28. J. S. Blakemore, Semiconductor Statistics (Courier Corporation, New York, 2002). Google Scholar
- 29. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. (Grace) Xing, and D. Jena, Appl. Phys. Lett. 109, 212101 (2016). https://doi.org/10.1063/1.4968550, Google ScholarCrossref, ISI
- 30. J. Jesenovec, J. Varley, S. E. Karcher, and J. S. McCloy, J. Appl. Phys. 129, 225702 (2021). https://doi.org/10.1063/5.0050468, Google ScholarCrossref
- 31. See https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.html. Google Scholar
- 32. K. Ghosh and U. Singisetti, J. Appl. Phys. 124, 085707 (2018). https://doi.org/10.1063/1.5034120, Google ScholarCrossref, ISI
Article Metrics
Views
412
Citations
Crossref
0
Web of Science
ISI
3
Altmetric
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.