No Access Submitted: 24 January 2022 Accepted: 22 April 2022 Published Online: 17 May 2022
Journal of Vacuum Science & Technology A 40, 043401 (2022);
more...View AffiliationsView Contributors
  • Ekaterine Chikoidze
  • Corinne Sartel
  • Hayate Yamano
  • Zeyu Chi
  • Guillaume Bouchez
  • François Jomard
  • Vincent Sallet
  • Gérard Guillot
  • Kamel Boukheddaden
  • Amador Pérez-Tomás
  • Tamar Tchelidze
  • Yves Dumont
Ultra-wide bandgap gallium oxide (∼5 eV) has emerged as a novel semiconductor platform for extending the current limits of power electronics and deep ultraviolet optoelectronics at a predicted fraction of cost. Finding effective acceptor dopant for gallium oxide is a hot issue. One element that quite often is considered as a potential candidate is zinc. A number of experimental works have reported the signature of Zn-acceptor, but the direct evidence of hole conductivity was missing. In this work, p-type Zn-doped Ga2O3 thin films were grown by the metal-organic chemical vapour deposition technique on sapphire substrates. By high-temperature Hall effect measurements, Zn related acceptor level ionization energy as 0.77 eV above the valence band maximum was determined. Additionally, we have carried out the simulation study regarding the application of the Zn:Ga2O3 semi-insulating material, to be used as a guard ring for improving the high voltage performance of the Schottky diode structure.
The ICN2 is funded by the CERCA programme/Generalitat de Catalunya and by the Severo Ochoa programme of the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, Grant No. SEV-2017-0706). GEMaC colleagues acknowledge financial support of the French National Agency of Research (ANR), project “GOPOWER” (No. CE-50 N0015-01).
  1. 1. S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, J. Appl. Phys. 124, 220901 (2018)., Google ScholarCrossref, ISI
  2. 2. J. Zhang, J. Shi, D.-C. Qi, L. Chen, and K. H. L. Zhang, APL Mater. 8, 020906 (2020)., Google ScholarCrossref, ISI
  3. 3. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, J. Phys. Chem. Solids 67, 1656 (2006)., Google ScholarCrossref
  4. 4. J. Åhman, G. Svensson, and J. Albertsson, Acta Crystallogr. C 52, 1336 (1996)., Google ScholarCrossref
  5. 5. E. Chikoidze et al., Mater. Today Phys. 15, 100263 (2020). Google ScholarCrossref
  6. 6. C. Li, J.-L. Yan, L.-Y. Zhang, and G. Zhao, Chin. Phys. B 21, 127104 (2012)., Google ScholarCrossref, ISI
  7. 7. A. Kyrtsos, M. Matsubara, and E. Bellotti, Appl. Phys. Lett. 112, 032108 (2018)., Google ScholarCrossref, ISI
  8. 8. C. Y. Yu, X. J. Liu, J. Lu, G. P. Zheng, and C. T. Liu, Sci. Rep. 3, 2124 (2013)., Google ScholarCrossref
  9. 9. J. L. Lyons, Semicond. Sci. Technol. 33, 05LT02 (2018)., Google ScholarCrossref, ISI
  10. 10. N. K. Shrestha, K. Lee, R. Kirchgeorg, R. Hahn, and P. Schmuki, Electrochem. Commun. 35, 112 (2013)., Google ScholarCrossref
  11. 11. Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura, and K. Teramura, Cataly. Lett. 125, 22 (2008)., Google ScholarCrossref
  12. 12. Q. Feng, J. Liu, Y. Yang, D. Pan, Y. Xing, X. Shi, X. Xia, and H. Liang, J. Alloy Compd. 687, 964 (2016)., Google ScholarCrossref
  13. 13. X. H. Wang, F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. X. Guo, J. Phys. Chem. Solids 75, 1201 (2014)., Google ScholarCrossref, ISI
  14. 14. F. Alema et al., Phys. Status Solids A 214, 1600688 (2017)., Google ScholarCrossref
  15. 15. F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, and W. V. Schoenfeld, J. Cryst. Growth 475, 77 (2017)., Google ScholarCrossref, ISI
  16. 16. Z. Baji, I. Cora, Z. E. Horváth, E. Agócs, and Z. Szabó, J. Vac. Sci. Technol. A 39, 032411 (2021)., Google ScholarScitation, ISI
  17. 17. T. D. Gustafson, J. Jesenovec, C. A. Lenyk, N. C. Giles, J. S. McCloy, M. D. McCluskey, and L. E. Halliburton, J. Appl. Phys. 129, 155701 (2021)., Google ScholarCrossref, ISI
  18. 18. D. Skachkov and W. R. L. Lambrecht, Appl. Phys. Lett. 114, 202102 (2019)., Google ScholarCrossref, ISI
  19. 19. C. Zhang, F. Liao, X. Liang, H. Gong, Q. Liu, L. Li, X. Qin, X. Huang, and C. Huang, Phys. B Condens. Matter 562, 124 (2019)., Google ScholarCrossref
  20. 20. C. Pansegrau, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, Appl. Phys. Lett. 119, 102104 (2021)., Google ScholarCrossref, ISI
  21. 21. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland Publishing Company, Amsterdam, 1964), p. 1039. Google Scholar
  22. 22. M. J. Tadjer et al., J. Phys. D Appl. Phys. 54, 034005 (2021). Google ScholarCrossref
  23. 23. E. Chikoidze et al., J. Mater. Chem. C 7, 10231 (2019). Google ScholarCrossref
  24. 24. S. Modak et al., APL Mater. 10, 031106 (2022)., Google ScholarCrossref, ISI
  25. 25. E. Chikoidze et al., Mater. Today Phys. 3, 118 (2017). Google ScholarCrossref
  26. 26. G. Pozina, C.-W. Hsu, N. Abrikossova, and C. Hemmingsson, Phys. Status Solidi A 218, 2100486 (2021). Google ScholarCrossref
  27. 27. E. Chikoidze et al., Cryst. Growth Des. 20, 2535 (2020). Google ScholarCrossref
  28. 28. J. S. Blakemore, Semiconductor Statistics (Courier Corporation, New York, 2002). Google Scholar
  29. 29. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. (Grace) Xing, and D. Jena, Appl. Phys. Lett. 109, 212101 (2016)., Google ScholarCrossref, ISI
  30. 30. J. Jesenovec, J. Varley, S. E. Karcher, and J. S. McCloy, J. Appl. Phys. 129, 225702 (2021)., Google ScholarCrossref
  31. 31. See Google Scholar
  32. 32. K. Ghosh and U. Singisetti, J. Appl. Phys. 124, 085707 (2018)., Google ScholarCrossref, ISI
  1. © 2022 Author(s). Published under an exclusive license by the AVS.